悬“珠”济世——单液滴微萃取(SDME)的妙用

产品详细

  傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。

  单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。

  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8μL辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做“溶剂微萃取”(“solvent microextraction” ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。

  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。

  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 能够获得较大液滴的稳定性,避免液滴被污染,不会由于样品基体“脏”而受一定的影响,与浸入法相比有些情况下会得到更快的萃取速度。

  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而能够降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不但可以吸附还能吸收,所以它的吸着容量要大于SPME。

  到目前SDME有7种模式,可大致分为双相和三相微萃取,决定于相平衡存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5

  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。

  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是因他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。

  为了改善传质速率,顶空SDME和直接浸入SDME能够正常的使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME能够正常的使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1–3 μL液体或顶空液滴一起抽吸到注射器中,保持一段时间(停滞时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。

  静态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1μL甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。

  动态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3μL样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3μL样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1μL甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。

  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停滞时间和注射器进样等动作。

  两种使用最多的模式——直接浸入和顶空溶剂微萃取——具有一些不同的应用领域(尽管有一些分析物能够正常的使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品非间接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。

  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们能和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。

  除去HPLC之外,可以用DI-SDME把样品处理之后做多元化的分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。若使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。

  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。

  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也能适应,除去液体样品之外,固体或气体也能够正常的使用这一模式进行萃取。

  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 μL溶剂,较大的溶剂体积能大大的提升检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品能够正常的使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。

  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没什么限制,常常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机物、无机和金属有机物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者一起进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76–83)就是用2μL正辛醇液滴(含有4.0×10−6M 浓度的正十五烷和2.0×10−3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂能够正常的使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基和。

  在HS-SDME中广泛使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME能够最终靠增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大幅度的提升顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就能够实现,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样做才能够使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就能够尽可能的防止灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。

  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却办法能够精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40μL溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20μL溶剂(实验证明20μL溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。

  与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。

  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:

  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。

  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做“顶空水基液相微萃取”,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上做多元化的分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54–66)。

  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和气相(液相)之间的平衡,提高温度能让分析物更多地蒸发到空间,增加气相中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。

  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,通常来说萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。

  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,以此来降低了萃取物在水中的溶解度,所以加入盐能大大的提升萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或是说改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。

  在萃取过程中进行搅拌能大大的提升水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,能大大的提升样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。

  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。

  1090万!中国科学院场发射透射电子显微镜和高分辨场发射扫描电子显微镜采购项目

  1240万!中国科学院超高分辨率激光共聚焦显微镜和原位液体环境透射电镜采购项目

  1225万!中国科学院超快速超灵敏转盘共聚焦系统、原位电化学反应可视化共焦光学显微镜等采购项目

  1129万!中国科学院场发射电子探针显微分析仪仪器配置和快速超分辨活细胞成像系统采购项目

  1072万!中国科学院实时细胞代谢系统、多接收电感耦合等离子体质谱仪和高分辨液质联用分析系统等采购项目

  创新引领 YOUNG帆起航——仪器信息网25周年 我们不一YOUNG!

  分析仪器产业调研万里行第二十六站——天津博纳艾杰尔科技有限公司

  分析仪器产业调研万里行第二十七站——北京先驱威锋技术开发公司

  分析仪器产业调研万里行第二十八站——北京创新通恒科技有限公司